Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Nanoscale ; 16(11): 5729-5736, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38407360

RESUMEN

Spectroscopic single-molecule localization microscopy (sSMLM) simultaneously captures spatial localizations and spectral signatures, providing the ability of multiplexed and functional subcellular imaging applications. However, extracting accurate spectral information in sSMLM remains challenging due to the poor signal-to-noise ratio (SNR) of spectral images set by a limited photon budget from single-molecule fluorescence emission and inherent electronic noise during the image acquisition using digital cameras. Here, we report a novel spectrum-to-spectrum (Spec2Spec) framework, a self-supervised deep-learning network that can significantly suppress the noise and accurately recover low SNR emission spectra from a single-molecule localization event. A training strategy of Spec2Spec was designed for sSMLM data by exploiting correlated spectral information in spatially adjacent pixels, which contain independent noise. By validating the qualitative and quantitative performance of Spec2Spec on simulated and experimental sSMLM data, we demonstrated that Spec2Spec can improve the SNR and the structure similarity index measure (SSIM) of single-molecule spectra by about 6-fold and 3-fold, respectively, further facilitating 94.6% spectral classification accuracy and nearly 100% data utilization ratio in dual-color sSMLM imaging.

2.
ACS Appl Mater Interfaces ; 15(43): 50437-50446, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37851951

RESUMEN

Inorganic microcapsules (IMs) have gained significant attention as versatile platforms for delivering functional agents in various fields. Traditional template-dependent methods employing hard templates often involve complex and harsh template removal processes. Achieving IMs with diverse composition and structure remains challenging with current preparation strategies. Therefore, in this work, we have for the first time demonstrated an extremely facile and efficient liquid-marbles-based template approach for fabricating pure inorganic microcapsules via interfacial reaction in a mild aqueous solution. The water-water reaction interface is created by changing the wettability of the liquid marble (LM) surface through the icing-melting process. The composition and function of the inorganic shell could be easily adjusted by varying the inorganic reagent species of the interfacial reaction, the hydrophobic particle of the shell, and the reaction environment according to the specific requirements of the application field. Such an approach provides a flexible platform for material preparation.

3.
IEEE J Biomed Health Inform ; 27(12): 5860-5871, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37738185

RESUMEN

Multimodal volumetric segmentation and fusion are two valuable techniques for surgical treatment planning, image-guided interventions, tumor growth detection, radiotherapy map generation, etc. In recent years, deep learning has demonstrated its excellent capability in both of the above tasks, while these methods inevitably face bottlenecks. On the one hand, recent segmentation studies, especially the U-Net-style series, have reached the performance ceiling in segmentation tasks. On the other hand, it is almost impossible to capture the ground truth of the fusion in multimodal imaging, due to differences in physical principles among imaging modalities. Hence, most of the existing studies in the field of multimodal medical image fusion, which fuse only two modalities at a time with hand-crafted proportions, are subjective and task-specific. To address the above concerns, this work proposes an integration of multimodal segmentation and fusion, namely SegCoFusion, which consists of a novel feature frequency dividing network named FDNet and a segmentation part using a dual-single path feature supplementing strategy to optimize the segmentation inputs and suture with the fusion part. Furthermore, focusing on multimodal brain tumor volumetric fusion and segmentation, the qualitative and quantitative results demonstrate that SegCoFusion can break the ceiling both of segmentation and fusion methods. Moreover, the effectiveness of the proposed framework is also revealed by comparing it with state-of-the-art fusion methods on 2D two-modality fusion tasks, our method achieves better fusion performance than others. Therefore, the proposed SegCoFusion develops a novel perspective that improves the performance in volumetric fusion by cooperating with segmentation and enhances lesion awareness.


Asunto(s)
Neoplasias Encefálicas , Procedimientos Neuroquirúrgicos , Humanos , Examen Físico , Extremidad Superior , Procesamiento de Imagen Asistido por Computador
4.
J Nanobiotechnology ; 21(1): 107, 2023 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-36964565

RESUMEN

Due to the excellent biocompatible physicochemical performance, luminogens with aggregation-induced emission (AIEgens) characteristics have played a significant role in biomedical fluorescence imaging recently. However, screening AIEgens for special applications takes a lot of time and efforts by using conventional chemical synthesis route. Fortunately, artificial intelligence techniques that could predict the properties of AIEgen molecules would be helpful and valuable for novel AIEgens design and synthesis. In this work, we applied machine learning (ML) techniques to screen AIEgens with expected excitation and emission wavelength for biomedical deep fluorescence imaging. First, a database of various AIEgens collected from the literature was established. Then, by extracting key features using molecular descriptors and training various state-of-the-art ML models, a multi-modal molecular descriptors strategy has been proposed to extract the structure-property relationships of AIEgens and predict molecular absorption and emission wavelength peaks. Compared to the first principles calculations, the proposed strategy provided greater accuracy at a lower computational cost. Finally, three newly predicted AIEgens with desired absorption and emission wavelength peaks were synthesized successfully and applied for cellular fluorescence imaging and deep penetration imaging. All the results were consistent successfully with our expectations, which demonstrated the above ML has a great potential for screening AIEgens with suitable wavelengths, which could boost the design and development of novel organic fluorescent materials.


Asunto(s)
Inteligencia Artificial , Imagen Óptica , Imagen Óptica/métodos , Fluorescencia , Aprendizaje Automático , Colorantes Fluorescentes/química
5.
Langmuir ; 39(10): 3601-3609, 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36848440

RESUMEN

The reaction mechanism of the pozzolanic reaction of metakaolin (MK) from the atomic point of view has not yet been explored. To explain the process and mechanism of the pozzolanic reaction from the atomic point of view, molecular insight into the pozzolanic reaction of MK and calcium hydroxide (CH) was analyzed through the reaction molecular dynamics (MD) simulation. The results show that the pozzolanic reaction of MK and CH can be essentially regarded as the CH decomposition and penetration into MK. Also, the structure evolution after the pozzolanic reaction shows that the water molecules cannot penetrate the MK structure till the participation of Ca2+ and OH- ions of CH. The Ca2+ and OH- ions have strong interaction with MK and drill into the MK structure, followed by the destruction of a part of the MK structure and water penetration. The final structure of CH removed by MK can be regarded as the precursor of the CASH gel structure.

6.
Bioorg Chem ; 130: 106199, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36370648

RESUMEN

Due to the diverse H2O2 distribution in organelles, fluorescent probes were usually required to be prepared separately, which limited the convenience and practicability. Herein, we reported a flexible strategy to in-situ construct H2O2 fluorescent probes in different organelles. A tetrazine fused probe TP was developed with rapid click reaction capacity and sensitive H2O2 response. When treated with H2O2, the turn-on fluorescence was effectively quenched by the tetrazine part. Only after click reaction with dienophiles, the fluorescence resumed. In application, cells were firstly treated with triphenylphosphorus tagged norbornene (TPP-NB) to label mitochondria, which was followed by the introduction of probe TP to trigger click reaction. The in-situ constructed probe P1 served as a local H2O2 sensor. In a similar way, probe P2 was in-situ constructed in lysosomes via probe TP and morpholine tagged norbornene (MP-NB). With this on-demand modular assembling and double turn-on features, our strategy to construct fluorescent probes presented high flexibility and anti-interference performance, which was expected to inspired more applications in biological studies.


Asunto(s)
Colorantes Fluorescentes , Peróxido de Hidrógeno , Humanos , Colorantes Fluorescentes/metabolismo , Peróxido de Hidrógeno/metabolismo , Células HeLa , Lisosomas/metabolismo , Mitocondrias , Norbornanos/metabolismo
7.
Materials (Basel) ; 15(23)2022 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-36499994

RESUMEN

The microstructure and performance of magnesium potassium phosphate cement (MKPC), a kind of magnesium phosphate cement (MPC), are determined by the hydration products. In this paper, the hydration behavior of MKPC is investigated through various material characterization methods and thermodynamic modeling, including X-ray diffraction (XRD), thermogravimetric and differential scanning calorimeter (TG/DSC), scanning electron microscopy (SEM), mercury intrusion porosimetry (MIP) and GEMS software. The results of XRD, TG/DSC and SEM all indicate that K-struvite (MgKPO4·6H2O) is the main hydration product of MKPC. When the curing age is 1 day and 28 days, the TG data indicate that the mass loss of MKPC in the range of 60-200 °C is 17.76% and 17.82%, respectively. The MIP results show that the porosity of MKPC is 29.63% and 29.61% at the curing age of 1 day and 28 days, respectively, which indicates that the structure of MKPC becomes denser with the increase in curing age. In addition, the cumulative pore volume of MKPC at the curing age of 28 days is 2.8% lower than that at 1 day, and the pore diameters are shifted toward the small pores. Furthermore, the thermodynamic modeling is well suited to make an analysis of the hydration behavior of MKPC.

8.
Biomater Sci ; 10(24): 6862-6892, 2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36222758

RESUMEN

Gene therapy has shown great potential in the treatment of many diseases by downregulating the expression of certain genes. The development of gene vectors as a vehicle for gene therapy has greatly facilitated the widespread clinical application of nucleic acid materials (DNA, mRNA, siRNA, and miRNA). Currently, both viral and non-viral vectors are used as delivery systems of nucleic acid materials for gene therapy. However, viral vector-based gene therapy has several limitations, including immunogenicity and carcinogenesis caused by the exogenous viral vectors. To address these issues, non-viral nanocarrier-based gene therapy has been explored for superior performance with enhanced gene stability, high treatment efficiency, improved tumor-targeting, and better biocompatibility. In this review, we discuss various non-viral vector-mediated gene therapy approaches using multifunctional biodegradable or non-biodegradable nanocarriers, including polymer-based nanoparticles, lipid-based nanoparticles, carbon nanotubes, gold nanoparticles (AuNPs), quantum dots (QDs), silica nanoparticles, metal-based nanoparticles and two-dimensional nanocarriers. Various strategies to construct non-viral nanocarriers based on their delivery efficiency of targeted genes will be introduced. Subsequently, we discuss the cellular uptake pathways of non-viral nanocarriers. In addition, multifunctional gene therapy based on non-viral nanocarriers is summarized, in which the gene therapy can be combined with other treatments, such as photothermal therapy (PTT), photodynamic therapy (PDT), immunotherapy and chemotherapy. We also provide a comprehensive discussion of the biological toxicity and safety of non-viral vector-based gene therapy. Finally, the present limitations and challenges of non-viral nanocarriers for gene therapy in future clinical research are discussed, to promote wider clinical applications of non-viral vector-based gene therapy.


Asunto(s)
Nanopartículas del Metal , Nanotubos de Carbono , Ácidos Nucleicos , Oro , Terapia Genética
9.
Langmuir ; 38(37): 11337-11345, 2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-36063092

RESUMEN

When metakaolin (MK) is alkalized with an alkaline activator, it depolymerizes under the action of the alkali. However, the process of MK alkalinization is still unrevealed. Here, we supplied a molecular insight into the process of MK alkalinization through reaction molecular dynamics (MD) simulation. The structure, dynamics, and process of MK alkalinization are systematically investigated. The results showed that the layered structure of MK was destroyed and the silicates in MK were dissolved by sodium hydroxide solution during the alkalinization reaction of MK. The aluminates in MK are not dissolved, indicating that aluminates are more stable than silicates. Moreover, the equilibrium structures of MK with H2O and MK with NaOH solution show that only when both sodium hydroxide and water are involved in the alkalinization reaction, the silicates in MK undergo depolymerization. Also, the observed final state of MK alkalinization can be recognized as the precursor of alkali-activated materials (AAMs).

10.
Mater Horiz ; 9(10): 2603-2612, 2022 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-35942798

RESUMEN

Braille recognition is of great significance for the visually impaired and blind people to achieve convenient communication and learning. A self-powered Braille recognition sensing system with long-term survivability and phonic function could provide those people with greatly enhanced access to information and thus improve their living quality. Herein, we develop a skin-like self-powered Braille recognition sensor with self-healing, temperature-resistant and stretchable properties, which is further connected with the designed audio system to realize real-time conversion from mechanical stimulus to electrical signals and then to audio signals. The sensor is fabricated using dynamic interaction-based self-healing materials, which constitute an imine bond-based cross-linked polymer for the triboelectric layer and a hydrogen bond-based organohydrogel for the electrode layer. Moreover, the conductive organohydrogel-based electrode is provided with stretchable, anti-freezing, and non-drying properties. Consequently, minimized impact on the output performance of the sensor is found under mechanical impact, harsh environments and large deformation, enabling a long lifespan, high durability, and good stability. The self-powered sensor can be applied in a Braille recognition system, in which the Braille characters can be further decoded and read out. This work shows a reliable and flexible device with promising prospects in information technology.


Asunto(s)
Personas con Daño Visual , Electrodos , Humanos , Iminas , Polímeros , Temperatura
11.
Biosensors (Basel) ; 12(6)2022 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-35735540

RESUMEN

Blood glucose concentration is important for metabolic homeostasis in humans and animals. Many diabetic patients need to detect blood glucose daily which burdens community hospitals and family healthcare. Optical fiber sensors are widely used in biomedical detection because of their compact structure, fast response, high sensitivity, low cost, and ease of operation. In this work, we constructed a Fabry-Perot (FP) cavity biosensor for the fast detection of glucose concentration in serum. The femtosecond laser micromachining was applied to fabricate the FP cavity by printing the fiber-tip fixed-supported bridge at the end face of the optical fiber. An additional hemisphere was printed at the center of the outer surface of the bridge to avoid multi-beam interference. The results demonstrated that the proposed biosensor had high refractive index (RI) detection sensitivity, roughly 1039 nm/RIU at a wavelength of 1590 nm, and the detection sensitivity for glucose was around 0.185 nm/ (mg/mL) at a wavelength of 1590 nm. Due to its high sensitivity, compact structure, and fast response, the FP cavity biosensor has great potential to be applied in family healthcare for glucose concentration detection of diabetic patients.


Asunto(s)
Tecnología de Fibra Óptica , Interferometría , Glucemia , Diseño de Equipo , Humanos , Refractometría
12.
Materials (Basel) ; 15(11)2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35683067

RESUMEN

In the interest of solving the resource and environmental problems of the construction industry, low-carbon geopolymer coating ensures great durability and extends the service life of existing infrastructure. This paper presents a multidisciplinary assessment of the protective performance and environmental impacts of geopolymer coating. Various parameters, such as main substance, water-solid (W/S) ratio, activator type and curing time, were investigated for their effects on interface characterization in terms of contact angle, surface energy, mechanical properties and microstructure. These parameters had negligible effects on the amounts and types of hydrophilic functional groups of geopolymer surfaces. A combination of organic surface modifiers and geopolymer coatings was shown to ensure hydrophobic surface conditions and great durability. Silicon-based modifiers exhibited better wetting performance than capillary crystalline surfactants by eliminating hydroxyl groups and maintaining structural backbone Si-O-T (Si, Al) on geopolymers' surfaces. Finally, life-cycle analysis was conducted to investigate the environmental performance. Geopolymer coating yielded substantially lower environmental impacts (50-80% lower in most impact categories) than ordinary Portland cement (OPC) coating. Silicon-based modifiers had negligible influence due to their minimal usage. Increasing the W/S ratio diluted the geopolymer coating and decreased the environmental impacts, and slag-based geopolymer coating achieved lower environmental impacts than FA-based and MK-based varietie.

13.
Spectrochim Acta A Mol Biomol Spectrosc ; 280: 121532, 2022 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-35752038

RESUMEN

Hydrogen sulfide (H2S) is an important signal molecule involved in intracellular activities. To understand the role of H2S in cellular physiological and pathological process, the development of sensitive and selective methods, especially biocompatible assays, for efficient monitoring the level of H2S is necessary. Herein, we modified novel rare earth element europium (EU) based fluorescent nanospheres with azide (-N3) based sensor to construct an ingenious ratiometric fluorescent nanoprobe EU-N3. This nanoprobe showed excellent water solubility and high biocompatibility for intracellular H2S accurate detection. Nanoprobe EU-N3 had two obvious emission peaks, the green fluorescence peak at 540 nm increased according to the increasing of H2S concentration and the red fluorescence peak at 616 nm was stable as ratiometric reference. The fluorescence intensity ratio (I540/I616) displayed good linear response (R = 0.99136) in H2S range of 0.5 âˆ¼ 30 µM. The analytes response assay demonstrated that the nanoprobe EU-N3 possessed a better specificity for H2S, compared with other 9 anions and 3 cations. The cell viability assay indicated the nanoprobe EU-N3 had an excellent biocompatibility. The cell imaging showed that the proposed nanoprobe could be applied for detecting the intracellular H2S changes accurately in live cells. Such nanoprobe provided a safe and accurate strategy for intracellular H2S detection, which is helpful for the real-time H2S visualization in the live cell activities.


Asunto(s)
Sulfuro de Hidrógeno , Nanopartículas , Colorantes , Europio , Fluorescencia , Colorantes Fluorescentes
14.
Materials (Basel) ; 15(6)2022 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35329633

RESUMEN

Graphene oxide (GO) has been found to be an attractive nanomaterial to improve the properties of cementitious composites. However, the use of GO in the industry is limited by its high cost. To achieve a higher cost/performance ratio, GO can be strategically applied in certain parts of cementitious composites structure according to the principle of functionally graded materials. In this study, graded distribution of GO in cement mortar was achieved by sequentially casting a fresh GO-incorporated cement layer on another cement mortar layer. The mechanical properties, especially flexural strength, of layered cement mortar were found to be dependent on the GO content, the delay time, and the interface formed due to layering fabrication. With the GO incorporated in the tensile region only (30% of the total depth), the flexural strength of the layered beam attained 90.91% of that of the beam, with GO uniformly distributed throughout the sample. Based on the results of rapid chloride migration tests, when 12 mm GO-incorporated cement mortar layer was used, the chloride migration coefficient was reduced by 21.45%. It was also found that the measured chloride migration coefficient of layered cement mortar agreed with the series model. The present investigation provides an efficient approach to use GO in cement-based materials from the perspective of mechanical and durability properties.

15.
Front Neurosci ; 16: 859515, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35321095
16.
Mater Horiz ; 9(4): 1283-1292, 2022 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-35170613

RESUMEN

Photodynamic efficiency is strongly dependent on the generation rate of reactive oxygen species (ROS) and the tissue penetration depth. Recent advances in materials science reveal that organic molecules with room-temperature phosphorescence (RTP) can potentially serve as efficient photosensitizers owing to their limited dark cytotoxicity and abundant triplet excitons upon light irradiation. In this study, we combine RTP materials with two-photon excitation to improve the ROS generation, therapeutic precision, and tissue penetration of photodynamic therapy. We successfully prepared a novel RTP-based photosensitizer (BF2DCz) with a high photoluminescence quantum yield of 47.7 ± 3% and a remarkable intersystem crossing efficiency of ∼90.3%. By encapsulation into the bovine serum albumin (BSA) matrix, BF2DCz-BSA exhibits excellent biocompatibility, negligible dark toxicity, and superior photostability. Excitation using a femtosecond laser causes BF2DCz-BSA to efficiently generate ROS and precisely exert cell damage at the desired location.


Asunto(s)
Fotoquimioterapia , Fármacos Fotosensibilizantes , Fotones , Fármacos Fotosensibilizantes/farmacología , Especies Reactivas de Oxígeno
17.
J Colloid Interface Sci ; 610: 202-212, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-34922076

RESUMEN

HYPOTHESIS: In situ grown layered double hydroxide (LDH) is commonly used one of the anticorrosion ways for metal materials; Due to the dense growth of LDH on the metal surface, its special layered structure can effectively delay the corrosion rate of metal. METHODS: In this study, we use a hydrothermal method to successfully grow Mg-Fe LDH film on steel substrates based on self-supplied Fe3+ ions. The films were characterized by X-ray diffraction, scanning electron microscopy, and X-ray energy dispersive spectrometry. The potential corrosion resistance of the obtained Mg-Fe LDH film was confirmed using electrochemical impedance spectroscopy and polarization curves. FINDINGS: After systematic adjustment and parameter optimization, it was found that Mg-Fe LDH film exhibited the best growth morphology and comprehensive performance with an initial pH value of 10, Mg2+/urea ratio of 1:4 and reaction time of 12 h. The SEM and electrochemical results further demonstrated that Mg-Fe LDH film play a good protection effect on carbon steel surface. This study provides an important reference for the processing of anticorrosion LDHs film.


Asunto(s)
Hidróxidos , Acero , Carbono , Corrosión , Metales
18.
Materials (Basel) ; 14(16)2021 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-34442896

RESUMEN

Reduced graphene oxide (rGO) has been widely used to modify the mechanical performance of alkali activated slag composites (AASC); however, the mechanism is still unclear and the electrical properties of rGO reinforced AASC are unknown. Here, the rheological, mechanical, and electrical properties of the AASC containing rGO nanosheets (0, 0.1, 0.2, and 0.3% wt.) are investigated. Results showed that rGO nanosheets addition can significantly improve the yield stress, plastic viscosity, thixotropy, and compressive strength of the AASC. The addition of 0.3% wt. rGO nanosheets increased the stress, viscosity, thixotropy, and strength by 186.77 times, 3.68 times, 15.15 times, and 21.02%, respectively. As for electrical properties, the impedance of the AASC increased when the rGO content was less than 0.2% wt. but decreased with the increasing dosage. In contrast, the dielectric constant and electrical conductivity of the AASC containing rGO nanosheets decreased and then increased, which can be attributed to the abundant interlayer water and the increasing structural defects as the storage sites for charge carriers, respectively. In addition, the effect of graphene oxide (GO) on the AASC is also studied and the results indicated that the agglomeration of GO nanosheets largely inhibited the application of it in the AASC, even with a small dosage.

19.
J Colloid Interface Sci ; 603: 799-809, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34246089

RESUMEN

Based on their characteristics, transition metal layered double hydroxides have been of great scientific interest for their use in supercapacitors. Up until now, severe aggregation and low intrinsic conductivity have been the major hurdles for their application. In this work, nickel-iron sulfide nanosheets (NiFeSx) and carbon nanotubes (CNTs) were synthesized on diatomite using chemical vapor deposition and a two-step hydrothermal method to overcome these challenges. Synthesis of this composite successfully exploits the synergistic effect of multicomponent materials to improve the electrochemical performance. Diatomite is selected as a substrate to provide preferable surroundings for the uniform dispersion of nanomaterial on its surface, which enlarges the active sites that come in contact with the electrolytes, significantly improving the electrochemical properties. Combined with high conductivity and a synchronous sulfurization effect, the NiFeSx@CNTs@MnS@Diatomite electrode delivered a high specific capacitance of 552F g-1 at a current density of 1 A g-1, a good rate capability of 68.4% retention at 10 A g-1, and superior cycling stability of 89.8% capacitance retention after 5000 cycles at 5 A g-1. Furthermore, an asymmetric supercapacitor assembled via NiFeSx@CNTs@MnS@Diatomite and graphene delivered a maximum energy density of 28.9 Wh kg-1 and a maximum power density of 9375 W kg-1 at a potential of 1.5 V. This research lays the groundwork for ideal material preparation as well as a rational design for the electrode material, including property enhancement of diatomite-based material for use in supercapacitors.

20.
J Nanobiotechnology ; 19(1): 219, 2021 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-34281545

RESUMEN

Chemo-photothermal therapy based on nanoparticles has emerged as a promising strategy for cancer treatment. However, its therapeutic efficacy and application potential are largely subjected to the uncontrollability and biotoxicity of functional nanoplatforms. Herein, a novel biocompatible and biodegradable metal organic framework (MOF), which was constructed by growing crystalline zeolitic imidazolate framework-8 on gold nanoroad (Au@ZIF-8), was designed and fabricated for efficient drug loading and controlled release. Owing to the large surface area and guest-matching pore size of ZIF-8, doxorubicin (DOX) was successfully loaded into the Au@ZIF-8 with a high drug loading efficiency of ~ 37%. Under NIR light or weakly acidic environment, the ZIF-8 layer was quickly degraded, which resulted in an on-demand drug release in tumour site. More importantly, under the irradiation of near infrared (NIR) laser, highly efficient cancer treatment was achieved in both in vitro cell experiment and in vivo tumour-bearing nude mice experiment due to the synergistic effect of photothermal (PTT) therapy and chemotherapy. In addition, the in vivo study revealed the good biocompatibility of Au@ZIF-8. This work robustly suggested that Au@ZIF-8 could be further explored as a drug delivery system for chemo-photothermal synergistic therapy.


Asunto(s)
Sistemas de Liberación de Medicamentos , Oro/química , Nanopartículas del Metal/química , Estructuras Metalorgánicas/química , Nanotubos/química , Terapia Fototérmica/métodos , Animales , Materiales Biocompatibles , Doxorrubicina/farmacología , Liberación de Fármacos , Células HeLa , Humanos , Células MCF-7 , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Neoplasias/tratamiento farmacológico , Tamaño de la Partícula , Preparaciones Farmacéuticas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...